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A particle bound in the Kaluza-Klein monopole field (the static Taub-Newman-Unti-Tamburino
space) is quantized by path integration. First, the system is regularized by the Kustaanheimo-Stiefel
procedure. Then, path integration is performed in the Euler variables to separate the monopole
harmonics. Dirac’s charge quantization condition is deduced naturally by dimensional reduction.
The radial path integral leads to the radial Green’s function expressed in closed form, from which
the discrete energy spectrum for g <0 (g =4m is the monopole parameter) and the corresponding
wave functions are obtained. A possibility of creating bound states for g >0 is also discussed by in-

troducing an external Coulomb-like potential.

I, INTRODUCTION

As is well known, the five-dimensional theory of Kalu-
za and Klein! is a unification scheme of gravity and elec-
tromagnetism. In the standard formulation of the theory,
one of the spatial dimensions is assumed to be curled into
a circle, and the metric of the five-dimensional space is
taken to be independent of the fifth variable x>, The line
element of the space is given by

dw’=V(x)[dx’+ A, (x)dx**+g,, (x)dx dx" . (1.1)

Here both the scalar field V(x) and the tensor field g, (x)
are understood as representing the effects of gravity, and
the vector field 4,(x) is identified with the electromag-
netic potential. When the scalar field ¥(x) is constant,
we have a four-dimensional framework for the theory of
gravitation with the U(1) gauge theory of electrodynam-
ics. In one of the earliest attempts to incorporate Dirac’s
monopole into the Kaluza-Klein scheme, Hoffmann® ex-
tended the space into the one in six dimensions and intro-
duced another vector potential to describe the singular
monopole potential together with the vector field of
Kaluza and Klein. There have been a number of works
on higher-dimensional Kaluza-Klein schemes which ac-
commodate monopoles. What is called the Kaluza-
Klein monopole here refers to the simplest soliton solu-
tion of the classical field equation, R ,, =0, found by
Gross and Perry,* and Sorkin;’

Vix)=(1+4m/r)~!, A4,=0,

Ay=0, Ay=4m(Ll—cosl). (1.2)

In the above, R ,p is the Ricci tensor of the five-
dimensional Kaluza-Klein space, 4m is the only parame-
ter that characterizes the Kaluza-Klein monopole solu-
tion, and (r,8,d) are polar coordinates in three-space. It
has been recognized*® that the subspace of (1.1) with
dx®=0 coincides with the static Taub-NUT (-Newman-
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Unti-Tamburino) instanton solution:%’
dwl=(1+4m /r)dr*+r’d 9>+ risin’0 d ¢*)

+(1+4m /r) " dx +4m(£1—cos®)d¢* . (1.3}

It has also been noted® that the line element (1.3) approxi-
mately describes the background for the relative motion
of two Bogomol'nyi-Prasad-Sommerfield monopoles.’
Quantization of a particle in such a space has been stud-
ied rather extensively; the correct energy spectrum has
already been obtained not only via Schridinger’s equa-
tion, but also by the supersymmetric WKB calculation'®
and the geometric quantization method.!'

In this paper we present the path-integral solution for a
test-particle bound in the static Kaluza-Klein monopole
geometry as given by (1.3). Because of the nontrivial
structure of the background space, Feynman’s path in-
tegral for the propagator cannot easily be evaluated,
However, thanks to the recent development of various
path-integration techniques, we have been able to solve a
number of nontrivial examples including the Dirac mono-
pole problem'>!® and the Kepler problem in uniformly
curved spaces by path integration.'* Here we also take
advantage of such new techniques. In Sec. II, employing
the Kustaanheimo-Stiefel coordinates' and a new “time”
parameter, we formulate the problem in terms of a path
integral. Then, in Sec. III, we perform path integration
explicitly by separating the monopole harmonics. Sec-
tion IV deals with quantization of the dual charge g =eg.
In Sec. V the radial Green’s function is derived in closed
form, from which we obtain the discrete energy spectrum
as well as the wave functions for the Kaluza-Klein (KX)
monopole system with a negative monopole parameter
{(g=4m <0). Section VI introduces an external path-
integrable Coulomb-like potential which generates a
discrete energy spectrum for the case of a positive param-
eter (g >0). Some remarks are made in Sec. VII regard-
ing the new features of the path-integral treatment of the
KK monopole.
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II. PATH-INTEGRAL FORMULATION

The Lagrangian for the system of interest is
2

M ) 2.1)

2

dw

L= it

which is indeed for a test particle of mass M moving in
the static Taub-NUT space (1.3). The parameter t em-
ployed in (2.1) differs from x° in (1.1), but refers to the
time with which the particle’s motion evolves in the
curved background (1.3). From the Lagrange equations
we can readily obtain the conserved quantity

e=M(1+rm/r)" (% +4m(t1—cosd)d], (2.2)

which is usually interpreted as the electric charge. It is
easy to see that the following Lagrangian is equivalent to
the one associated with the Taub-NUT line element (2.1):

eZ

MV’

where i >=# 302+ r%sin?0¢ 2 and g = 4me =eg.

For path-integral quantization, however, the Lagrang-
ian in either form (2.1) or (2.3) is too complicated. Since
there is no reason to believe that quantization should be
performed with the particular set of polar variables and
time parameter chosen in (2.1), we may select those
which are most convenient for path-integral quantization.
In fact, it is known that special care has to be exercised in
quantization in polar coordinates.'®!” The set of coordi-
nates we consider appropriate is the one of Kus-
taanheimo and Stiefel; that is, the Cartesian set
(u',u?,u? u*) related to Euler’s angles (8,4,1) by

L=2—A:,i-2+e:'c S+g(+1—cosf)d— (2.3)

u'/u=cos(8/2)cos[(¢+1)/2],

u®/u=cos(8/2)sin{($+)/2] ,

2.4)
u? /u=sin(0/2)cos{(¢—9)/2] ,
u*/u=sin(6/2)sin{{(d—4)/2],
where u =|u|. They satisfy the identities
r=uZEu2 , (2.5)
and
T2+ ri(g+cosbhP=4uta? . 2.6)

In order to change the original variables into the
Kustaanheimo-Stiefel (KS) coordinates, we further modi-
fy the Lagrangian (2.3) by introducing the additional
variable ¢ as

b3 2
W= [ | Tt gh -2 wiog+

+4E(u*+g)

ﬂﬂ +2 2( 4j) )2
L 2V[r +r(¢+cosfs )]

.5 _ P 82

+ex ’+q(tl—cosd)d MV 2.7)
The added variable is cyclic, so that its conjugate
momentum aL /31 is a constant of motion. Without loss
of generality, we can demand the condition that the con-
stant of motion associated with the ¢ variable is zeroon a
classical orbit. This demand is in fact the annihilation
condition imposed by Kustaanheimo and Stiefel: !’

2(—uzdy'+u1du2+u4du3-u3du4)=0 .

With the help of (2.5} and (2.6), the Lagrangian (2.7),
‘which is equivalent to (2.1) and (2.3) under the condition
imposed above, can be expressed in terms of the KS coor-
dinates:

=§%4u21’32+qhi(u,1’1]— zjjyﬂﬁ, (2.8)
where & *(u,8)=(+1—cos8)d, or, more explicitly,
2
h =2 u3ﬁ4-u4ﬁ3+—l-‘—f-—u;2(u;uz—u2ﬁ,)’ :
u UyTuj
h~(u 1'1)=—-—-%~ Y, — U, U -i—M(u Uy—u,u )l .
’ HZ 142 2% §+u3 g 443

The change of variables alone does not help much for
simplifying the Lagrangian. We wish also to choose an
appropriate time parameter. First, we note that
Hamilton’s characteristic action integral W= f [L(g,q)
-+ E ]dt can yield the same equations of motion that result
from Hamilton’s principal action integral
S=[L(q,g)d:. Then we write the former action in-
tegral as

w=[Lig,qdn (2.9)

where L(q,4)={L{g,¢)+E1(dt /dn), §=dq /dn, and 3
is a new “time” parameter. For the regularization of the
classical Kepler problem, Kustaanheimo and Stiefel used
a time parameter d7=dt /r that is proportional to the ec-
centric anomaly. Modifying the KS parameter, we
choose 7 such that
dt=4u’dn/Viu?) . (2.10)

Along a classical path, (2.10) is integrable, so that it is al-
ways possible to rescale the time interval r=¢" —¢' by

r=4u"u'o[ Vi)WV~ 2.11)

where o=7""—%". Substitution of (2.8) and (2.10) into
(2.9) yields

dyte(x—x%), (2.12)

which is certainly a qualified expression for the action of the classical Kaluza-Klein monopole system. With this action
we shall carry out path-integral quantization for the KK system.
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The path integral for the action (2.12) represents what is called the promotor!'? in five dimensions:

PO x " w, x %0 ) =exp| (ie /AN x M —x 1P w0) (2.13)
where
(4) 2t ot oy ...‘.
P (u" u';0) fexp 7 faWa’n Dluly)], (2.14)
with
W=wS—e(xM—x¥) . - ' (2.15)

The Green's function can be evaluated by integrating the four-dimensional promotor (2.14) as

a

Glu", ' E)=—x [ PO w0 (r,0)da - (2.16)
i#i ’

whose poles and residues provide us the energy spectrum and the wave functions of the system. The Jacobian
J(7,0)=dr1/do can be easily evaluated from (2.11).

HI, PERFORMING PATH INTEGRATION

Now we perform path integration for the promotor (2.14) explicitly. In the discretized version, the path integral
(2.14) is given by

2
N imw Nl

M
(4)¢ 1 e i
P¥u",u'30)= lim j_[[ nific, ,I-Il Ha’ 3.1)
with
i M 2 x 28 A2 2
W;= g, 80, bahfo,— | 5~k [afo, —J:-a +4g |E=~0 |0 - (3.2)

In the above we have used the notation Au;=u;—u;_,, ﬁjz=u jUj—p and o= N ;=10 ;. For explicit path integration,
however, it is more convenient to use u and the Euler angles of (2.4), in terms of which the path integral (3.1) can be ex-
pressed as

2
"o . 4i; M Yo s ‘1 .
PO ) =e ¢ exp | 28 | Jim fn i H ' ' g ujsing,du;d6,d¢,dy, ,
j=
i 3.3
with the short-time action
2
M 2 w 29 ﬂz
= —(Au, 1—cos—+ Adp;— |———4E (i i 34
] 20}(Au1) 3 1 cos 5 qcosB o; i, J o= 5 ujza" (3.4)
where
o, 8, g;_ Ad.+AY; g 6._ Ad; — Ay,
i d J-! i f Y BTG et J i
COS—= =08 —-C0§~>—00s 3 +sin 5 sin—5—cos 3 R
0; 8, _ 8, 6._
= i ji-1 . e Y i—1
cost-—cos—{cos 5 sin—"sin—>— ; (3.5
and Au;=u;—u; |, Ad;=¢;—¢;_,. The angular terms in (3.4) may be combined together as
Mii? _ Mi 6, 6 Ad;+Ay, | 290; | Ad,+AY, Ay,
ajj cos | == | +qcosf;Ad;= ) cosT]co:; =L | cos i 3 Y quji i 2 L4 -~ ;bj H
Mat 6, 6, Ad;— A, 2q0; | Ad;—AY; Ay,
+ i J i i i I i Y 3.6
7, sin 5 sin 2 cOSs 3 uf‘ 3 3 (3.6)

The approximation trick cosA¢L8Ad=cos(A¢dF8)+52/2+0(8%), as used in Ref. 19, enables us to write the right-
hand side of (3.6) in the form
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Mi? 0, 4q° ,
] B R T, . A et B O _ it
, cos [— -+-2 uf o ;cos 3 qAy;cos T |
where
cos(éj/Z)=cos(6j/2)cos(6j_1/2)cos[(A¢j+A$j)/2]+sin(0j/2)sin(9j_1/2)cos[(Agbj“Aﬂ’;j)ﬂ} . (3.7

Here we have introduced the shifted angle Ay =AY, —4q0; /Mi 1-2. We further take account of the approximate rela-
tions o cos(AB;/2)=0; +O(a}) and Ay;cos(A, /2)=A:pj+0(crj3-’2) to express the short-time action (3.4) in an
equivalent form: -

5 ~
M 2Mﬁj _ 6}- 2e? ~2 8q?
Sj—-r'j-(Auj) , 1 cos—= |~ 7—415’ ujaj—z—q;?aj+q'A¢j . (3.8)

Next, we use the unitary irreducible representations of SU(2),
! —, —iud gl —ivi
j-),uv('ﬁsgsﬁ)_e is dpv(e)e v ’

to make the following expansion of the angular contribution:°

mar | iMa} | 8,
ko, | 0| He, || |72
= ! (21+1)*—8vg /fi— L indd. =i
=3 3 2;:21exp - ity | e al 0 a k0, ) 69)
U=0py=—1 i

Carrying out the angular integrations of (3.3) with the aid of (3.9) and the orthogonality relations of the Wigner func-
tions,”® we find the promotor in the form

L2041
e -

P(4)(“”,u';a)= 2 2 ~1(.u-?q/ﬁ)(¢"—¢‘}e ~£(V—9/ﬁ)(lﬂ"_¢')div(6'f)di:(g')Pr(M(un,ui;a) , (3.10)
=opv=—1 167

where the radial promotor

P(u",u’;0)=8(u"u")" exp|(dig /ANE —e/M)o 1R, (4", u";0) (3.11)

{
is given as a radial path integral in four-space:

12

- L d M i [%5!

K u, r; =— i - —S. . .

A" u's0)=—— lim szl el B P jglduj (3.12)
with

2

= M < o, Mao? .,

S:=—(Au,?—KMA+1)—=— ‘o . 3.13

J 2crj( u; ) — A ZM':}]-Z 5 40, (3.13)

In the above we have set A={(2/+1)*— (8¢ /#)Nv—gq /#)]'>— L and
w’=4e?/M>—BE/M . (3.14)

The last path integral (3.12) is identical in form with that for the radial propagator of the three-dimensional harmonic
oscillator which has been evaluated exactly, the resuit being'’

LI v

Maou
————csclwo)
ifi

)“’Z—Afﬁw csclwo Jexp MO (41244 2)eot(wo) - (3.15)

2%

K’l(u",u';o)=(u"u' Il+l/2

In this fashion we have completed the path integration for the system represented by the action integral (2.12). There
are still a few more steps we have to take before reaching the Green’s function in three-space, from which we can read
off physically meaningful information.

IV. CHARGE QUANTIZATION

Before evaluating the Green’s function, we have to reduce the promotor (3.10) to the one in three-space, eliminating
the extra degree of freedom by integration:

POXe,to)=u"w’ [ PN o)y @.1)
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The integration over the extra variable ¢’ in (4.1) is as simple as

[ et ayr=ans, 4.2)
which results, as v is a half-integer, in charge quantization:

g=egq=s#, 2s=0,£1,+2,... . 4.3)

This coincides with the well-known charge quantization condition of Dirac.?!

Energy quantization and charge quantization are in nature two independent processes. For the KK monopole sys-
tem, the former is quantization of the energy of the content (a test particle) in a fixed Taub-NUT geometry, whereas the
latter is in a way quantization of the container (quantization of a parameter characterizing the geometry). In quantizing
the KK system, therefore, the dual charge ¢ is fixed to a constant value since each geometry is specified by a single
value of g. For charge quantization the cylindrical condition is usually employed, which demands that the x> coordi-
nate is periodic. The present path-integral approach not only provides the energy spectrum and the energy eigenfunc-
tions, but also has a built-in scheme that leads us very naturally to Dirac’s quantization condition (4.1). This charge
quantization by the dimensional reduction is indeed a topological quantization.

V. ENERGY SPECTRUM AND WAVE FUNCTIONS

The promotor (3.10) with (3.11) and (3.15) may be put into the form

S i
PR ro)=3 3 Pr o) Y66 Y 6,40, (5.1)
i=|siu=—1!
where
2+1 |
Yia08)= | = | d, ()T (5.2)

are, up to an arbitrary phase factor, identical with the monopole harmonics of Wu and Yang.? Note that the first sum

in (5.1) covers either all integers or half-integers depending on whether s takes integral values or half-integral values.
The radial promotor is given by (3.11) and (3.15) with r"=u"? and »'=u"%. Note also that A=2/+1.

The Green’s function is obtained by integration over the time interval o:
N re -
G u’ ’;E — P( u, r; J g ) l/2d , 5.3
(r", " E) .—iﬁfo (o (o ) T i d e (5.3)

where N is a normalization constant. The path-integral treatment usually provides a correct normalization because of
the initial condition limy_ K(r"”,r';7)=8(r" —r'). However, the present regularization procedure, being applied at
the classical level, does not guarantee the normalization of the Green’s function (E —H )G =1. Therefore, we insert N
in (5.3). Setting wo = —iz, x =2ikr", y=2ikr’, and

Mao=2itk, p o7 I, 3o | M . ‘ (5.4)

and utilizing the integral formula®
fo“’e ~2exp[ — L(x +y)eothz 1, [ (xy)!2eschz Jeschz dz =[T(p +v+ 1) /(xy) *T v+ DIM_, (X)W _, (y), (5.5

we obtain the radial Green’s function in closed form:

32MN [(1+4m /r")1+4m /r')])'/? Tip+1+1)

G o, —
(i) 7 2kr'"r’ (20 + 1)1

where M, 5(z) and W, g(z) are the Whittaker functions.
The poles of (5.6) occur only when in I'(p +1+1),

pti+l1=-—n,, n=012,..., (5.7)

which give rise to the discrete energy spectrum for which we are looking:

E =__ﬁi_[in(n2__S2)l/2_._(n2_S2)]

n gZM
172
ez L] nz n2
= —jt——— — | —— .
i t- (5.8)
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where s =g /fiand n=n,+1+1>s. The radial Green’s function (5.6) also possesses a branch cut in the E plane along a
real line (e /2M ) < E, which gives rise to a continuous spectrum

(5.9

The radial wave functions corresponding to the discrete spectrum (5.8) can be obtained from the residues of the
Green’s function at the poles. Using the relations

ResT(e)| =, =(=1)"/n,}!, : .
A .

= n I+1,—z/2p (2 +1
Wo viti+122)=(=1)"n,1z" e i L}IP (2),

n, (21 +2)

Mn,+z+1,z+1/z(z)=mzl“”eﬂnfaf””(ﬂ )

and setting N =(gME /16e#ip ), we find

ResG,(r",r‘;E)|E=En =R, (r'")R(r"), (5.10)
where

sn—1—10 " 2: V., am |"* —ria 2
Rylr)= | = L hedm | ey | A
! an(n+1) a, r noimt n

1/2 ! 172
4 (n+IN (2r/a,) 4m ~r/a, 2
ain (n—I—11 | 2+10 Frj =kl La+nom, .10

and a,=#(e?—2E,M)"/?, The radial wave functions R,(r) of (5.11), which are normalized with the measure
(1+%n /r)”'r*dr, vanish at r=—4m unless s =0 (4m =0). It is interesting to observe that the radial functions (5.11)
are identical, apart from the factor (1+4m /r)'/?, with the radial wave functions of the hydrogen atom in flat space if

(@, /n) is replaced by the Bohr radius. The complete wave functions for the bound states are given by

U w125 )=(16m 7)™ 2R, (1) Y5 (6,8)explisx®/4m) ,

(5.12)

which are normalized with measure (1+4m / r)”'r%sin0dr d6d ¢ dx>, and x> € [0, 16m ).

At this point we wish to make a remark concerning the
discrete energy spectrum (5.8). From (5.4} and (5.7) it is
clear that since p <0 the bound states (E <e’/2M) are
possible only when g =4m <0. Under this condition the
energy  spectrum  (5.8) has two  branches:
(e?/2M)>E, >0 and E, <0. Strangely, two energy ei-
genvalues correspond to a single value of the principal
quantum number n. Furthermore, while the positive
spectrum has an upper limit, the negative spectrum has
no lower limit.

To understand the strange structure of the energy spec-
trum, we have to remind ourselves of the fact that the
singular radius r=—4m imposes a strong restriction on
the classical motion of a test particle in the Taub-NUT
space. A particle of positive energy is allowed only in the
exterior region (r > —4m ), whereas a particle in the inte-
rior (r < —4m) is limited to possess a negative energy.
An exterior particle, which is under the influence of an
attractive Coulomb-like effective potential, is bound if
0<E <e’/2M and unbound if E >e?/2M. The exterior
particle, possessing a positive energy, cannot penetrate
into the interior region where only negative-energy parti-
cles are permitted to exist. The effective potential for an
interior particle is always repulsive, so that no bound
state is possible. Nevertheless, the particle of negative
energy cannot come out without acquiring an infinite

amount of energy into the exterior region. Consequently,
any test particle inside will be pushed onto the spherical
wall r=—4m. The sphere r=—4m is in fact the attrac-
tor which an interior particle will approach. The energy
spectrum (5.8) reflects this classical situation. The posi-
tive branch of the energy spectrum corresponds to the
classical particle bound in the Coulomb-like potential in
the exterior region. This explains why the radial wave
function (5.11) resembles those of the hydrogen atom. It
fact, the positive branch can be reduced to the usual
hydrogen-atom spectrum with an additive constant for
large quantum numbers n if (es#i/2M)'/? is identified
with the Coulomb charge. In contrast with the classical
situation, in quantum mechanics, the wave functions
(5.11) for E, >0 penetrate into the interior region to
reach the origin »=0 where they vanish if />1 and
remain finite if /=1, Now the negative branch of the
spectrum can be interpreted as belonging to the classical
particle confined in the interior region. The wave func-
tions of the interior particle can also extend their tails to
infinity beyond the singular sphere at »= —4m. It must
be noted, however, that the wave functions (5.11) belong-
ing to the positive-energy spectrum have the constants a,
specified by the positive values of E,. Those belonging to
the negative-energy spectrum have a, determined by the
negative values of E,, which are much smaller than those
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for E, >0. Because of the smallness of the values of a,,
the wave functions for E, <0 diminish quickly in the ex-
terior region.

V1. INTEGRABLE MODEL

The Kaluza-Klein systemm we have considered so far
has a discrete energy spectrum only for g =4m <0. Let
us now pursue a possibility of creating bound states for
g >0. Introducing an external Coulomb-like potential to
the original Lagrangian (2.1), we consider a simple path-
integrable model that gives for a positive monopole
charge a discrete energy spectrum which reduces to the
hydrogenlike spectrum with an additive constant when g
is small.

Namely, we modify the Lagrangian (2.7) for the pure
KK system as

E,V
Le=p+520
Mo 2 )
A +ré(y+costd)
2 EV
.5 : e g
*+q(+1— — + 1
+ex*+q(+1—cosBl¢ MV a (6.1)

where E; > e2/2M. The short-time action corresponding
to (3.2}, expressed in KS coordinates, reads

Wi=W,+4gE0;

M 2 +
—E&-}-(Au}) +gh;o;

292 ~2 222
ez

Apparently, the extra potentiai gives rise to an additional
phase factor exp(4igE,o/#) in the promotor (3.3).
Hence the calculation in Secs. III-V remains the same.
The additional phase only affects on the parameter p in
(5.4) as '

e

28 28 |el

Com g —_
Ppﬁm fiw E-E,

6.3)

The poles of the Green’s function (5.6) with such a
modification occur now at p°=—n for g >0. The resul-
tant discrete energy spectrum is

172
n2
B 1+42¢
32

n

Is]

E;=Z

2
h
- {—2—1+€0
§

(6.4)

with €,=ME,/e?, and has the following range:
e’/M—E,<Ef<e’/2M. Note that the lower bound
eliminates the second branch of the spectrum appearing
in (5.8).

VII, CONCLUDING REMARKS

In the above we have discussed the path-integral treat-
ment of the modified as well as pure KK systems. As for
the pure KK system with 4m <0, the bound-state ener-
gies have already been obtained by a variety of
methods.®'®!! However, no explicit expressions for the
energy eigenfunctions have been given, though expected
in the form of confluent hypergeometric functions. The
present path-integral method certainly provides yet
another way of handling the KK monopole. In most of
the other approaches, the Hamiltonian, constructed on
the Taub-NUT space, is the central object. In contrast,
the path-integral deals with the Lagrangian directly

formed from the line element of the background space. It

is as clear as in the other treatments that the bound states
occur only when the magnetic charge g is negative. The
resultant discrete spectrum for the bound states is in
agreement with the one already available. The new
features emerging from the present path-integral treat-
ment are the natural quantization condition on the dual
charge g =eg, the two branches of the energy spectrum
and the explicit expression for the corresponding wave
functions, which vanish at r=—4m. The monopole har-
monics for the angular parts are separated from the radi-
al part, and the radial part is path-integrated explicitly
and given in closed form in terms of the Whittaker func-
tions.

Application of the Kustaanheimo-Stiefel regularization
in a path integral is not all new. The KS procedure has
been used previously in soiving the hydrogen-atom prob-
lem by path integration.’** Since it has been directly
implemented in the Coulomb path integral, there are still
unresolved ambiguities in calculation. For instance, the
Jacobian of the KS coordinate mapping from R* to R
does not exist, so that the measure of path integration
cannot be determined uniquely. Furthermore, the
position-dependent time transformation may be integrat-
ed along the classical path, but it is difficult to understand
how one can arrive at a unique value for the total time in-
terval by integration over all paths. To circumvent such
ambiguous problems, we have impiemented the KS pro-
cedure at the classical level and applied the path-integral
quantization to the KK system described in the KS rec-
tangular coordinates. From the technical aspect, this is
also a feature of the present path-integral treatment.

To seek a possibility of bound states for the case of
g >0, we have also considered the influence of an external
Coulomb-like potential on the KK system. In fact, we
have found it possible to create a discrete energy spec-
trum for the positive monopole charge. Although the
pure KK monopole is a solution of the field equation
R =0 in five-dimensional Kaluza-Klein space, the
modified XK system is not. Whether the modified sys-
tem can be found as a solution for the field equation with
an appropriate source term is left for future study.
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